Blenderized diets: Is there any role in hospitals?

Krishnan Sriram

Common myth

 Blenderized diets are less expensive than and can replace scientific enteral formulas

(No recent citations using the search words "Blenderized diets")

Enteral tube feeding formulas are designated *medical* foods.

The US Food and Drug Administration (FDA) provides the following definition:

- "A medical food is prescribed by a physician when a patient has special nutrient needs in order to manage a disease or health condition
- and the patient is under the physician's ongoing care"

Scientific enteral formulas: Growth

In USA:

1974 - 36; 1989 - 200; 2006 - 350

(Ref: Campell SM; Nutr Clin Pract 2006; 21:411)

Some decrease there after as hepatic and pulmonary specific formulas are not as popular

In India:

1992 - 1

2012 - approximately 30 "true medical nutrition products, locally made + imported; regular polymeric + disease specific

Formula Comparison Blenderized Food vs Commercial Formulas

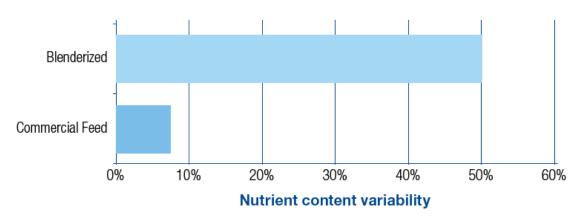
Blenderized Food	Commercial Formulas	
Unknown nutritional content	Complete and balanced nutrition	
Unknown osmolality	Low to moderate osmolality	
May contain lactose	Lactose and gluten free	
Poor microbial quality	Commercially sterile	
High viscosity	Excellent tube flow	
Difficult to make calorically dense	Calorically dense formula available	

Disadvantages of hospital-prepared blenderized diets

- Unpredictable nutrient contents
- More likely to underdeliver nutrients (75% vs 25% for ready-to-use)
- Significant day-to-day variability
- Deficient is some essential vitamins (B₂,B₆, vitamin A)
- Deficient in some essential trace elements even if in bioavailable form (Zn, Fe, Ca)
- Variable and high viscosity requiring large bore tubes

Safety and Nutritional Quality of Hospital-Prepared Enteral Feedings in the Philippines

Evaluation of nutritional quality and microbial safety of enteral feedings


Sorreda-Esguerra et al, *J Hosp Infect* 2001 Sullivan et al, *Asia Pac J Clin Nutr* 2004

Efficacy

Clinical studies confirm that blenderized formulas contain inconsistent nutrient levels.

Mokhalalati 2004¹⁸

- Blenderized formulas did not provide the predicted nutrient content and had a high degree of variability in nutrient content.
- Average nutrient variability for blenderized formulas ranged from 16% to 50% compared to 4% to 7% for commercial formulas.
- > Between hospital locations, the mean concentration of most nutrients varied by two- to three-fold.

Carvalho 2000²⁰

- Blenderized formulas provide inconsistent nutrient levels due to inconsistent nutrient levels in natural food and imprecise measurement of water and ingredients.
- Result is significant day to day variability and unpredictable nutrient content.

Asian study on blenderized hospital diets

Original Article

Nutritional analysis of blenderized enteral diets in the Philippines

Mary M Sullivan MPH, RD¹, Pearl Sorreda-Esguerra RND², Maria Bernadette Platon RND³, Cynthia G Castro RND⁴, Nancy R Chou, MS, RD⁵, Susan Shott PhD⁶, Gail M Comer MD⁵ and Pedro Alarcon MD, PhD⁵

Asia Pacific

Journal of

Clinical Nutrition

Sullivan et al, Asia Pac J Clin Nutr 2004

¹ Takeda Pharmaceuticals North America, Lincolnshire, IL, USA

² Philippine Heart Center, Manila, Philippines

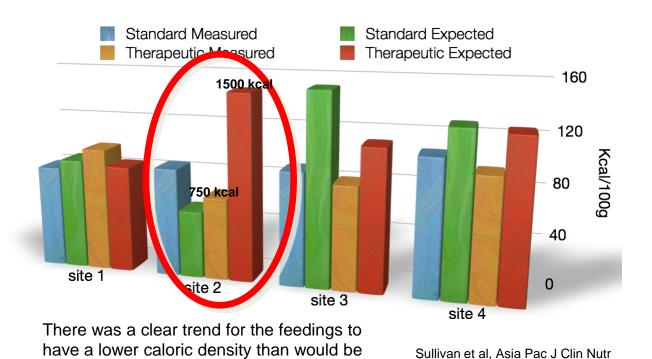
³ University of Santo Tomas Hospital, Manila, Philippines

Manila Sanitarium, Manila, Philippines

⁵ Abbott Laboratories, Abbott Park, IL, USA

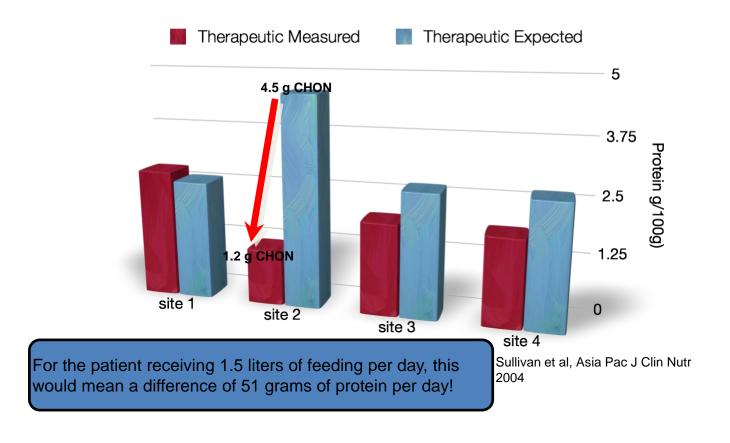
⁶ Rush University, Chicago, IL, USA

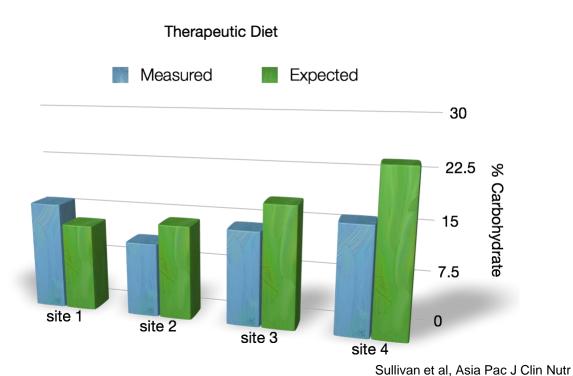
Recipes for blenderized enteral tube feedings


Hospital A	Hospital B	Hospital C	Hospital D	
Standard Feedings				
Powder 333 g	Powder , 265 g	Squash, 135 g	Banana, 4 whole peeled	
Tap water, 1350 mL	Tap water, 960 mL	Banana, 80 g	White bread, 5 slices	
		Nonfat dry milk, 17 g	Lugao*, 240 mL	
		White bread, 150 g	Egg, cooked, 1	
		Corn oil, 26 mL	Corn oil, 7.5 mL	
		Chicken breast, 67.5 g	White sugar, 4.2 g	
		Lugao*, 360 mL		
1500 mL Total	1200 mL Total	1000 mL Total	Total Volume NA	
	Mod	ified Feedings		
(Constinating Diet)	(Natural Formula Diet)	(High Fibre Low Cholesterol Diet)	(Diabetic Diet)	
Powder 289 g	Squash, 245 g	Squash, 180 g	Bananas 4.5 whole peeled	
Banana, 2.5 whole peeled	Banana, 5 whole peeled	Banana, 120 g	White bread, 5 slices	
Tap water, 1275 mL	Egg cooked, 272 g	Pineapple juice, 120 mL	Egg, cooked, 1	
	Corn oil, 60 mL	Mung beans, 62 g	Corn oil, 7.5 mL	
	White sugar, 12.6 g	Nonfat milk, 8.5 g	Lugao*, 240 mL	
		Egg, cooked 12.5 g		
		White sugar, 16.8 g		
		Oatmeal, 227 g		
		White bread, 110 g		
		Corn oil, 10 mL		
		Olive oil, 12.5 mL		
1500 mL Total	1000 mL Total	1000 mL Total	Total Volume NA	
		Sullivan et al,	Asia Pac J Clin Nutr	

2004

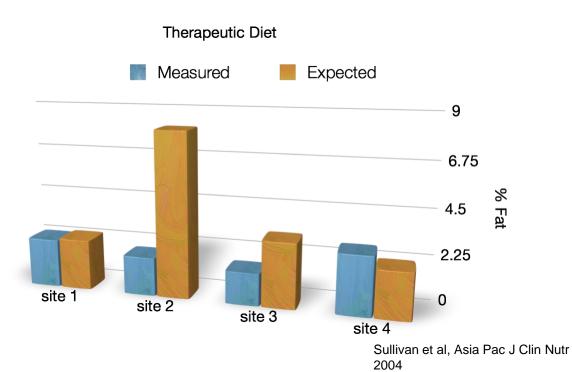
- Sites: 4
- 2 diets from each site (standard, therapeutic)
- Feedings prepared on 3 separate days
- Feedings prepared by hospital staff using routine procedures and usual recipes
- Study monitor observed the preparation of the diets


Caloric Density


2004

expected by the recipe analysis.

Protein



Carbohydrate

2004

Fat

Nutritional Analysis: Conclusion

- Blenderized foods provide highly variable nutrients and calories because:
 - there is day to day variability
 - the recipe does not accurately predict actual content
 - natural foods provide inconsistent nutrients
 - measurements of ingredients and water are imprecise and inaccurate

Safety

Clinical studies confirm that blenderized formulations contain unsafe levels of bacteria.

Sullivan 2001¹⁹

- Microbal quality of the majority of hospital prepared blenderized formulas were not within published guidelines for safety.
- > At preparation, 96% of samples had unacceptable standard plate counts greater than 10 cfu/mL and 58% were coliform positive.
- After 4 hours, 88% of samples had standard plate counts in excess of 103 cfu/g and samples that were coliform positive increased to 79%.

Mokhalalati¹⁸

- > All blenderized formula samples had detectable aerobic plate counts ≥10 cfu/g that increased significantly after 4 hours.
- > Coliform contamination varied between sites with 100% contamination at one hospital.

Carvalho 2000²⁰

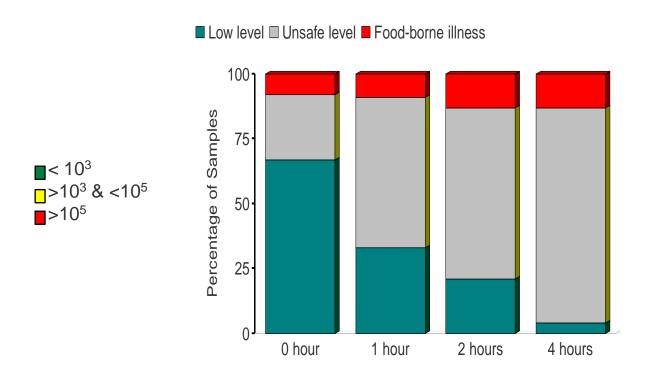
Blenderized formulas were more likely to have bacterial contamination than other hospital prepared diets.

Microbial contamination levels in blenderized formulas can reach those associated with foodborne illness.

Source of microbial contamination of enteral feeds

- Handling technique
- Unsanitary equipment
- Unsterile ingredients
- Improper storage and hang time
- Formula manipulations (medications)

Bacteria on hands after "routine" scrub



Contamination of blenderized enteral feeds

- Contaminated enteral formulas play a significant role in the etiology of diarrhea¹
- Blenders used in reconstituting or preparing feeds is the main source of bacterial contamination²

Okuma T et al. Nutrition 2000; 16:719
 Oliviera MH et al. 2000; Nutrition 16:729

Bacterial contamination

Sorreda-Esguerra et al, J Hosp Infect 2001

Functionality

Clinical studies confirm that blenderized formulas have high and inconsistent viscosity and osmolality which can result in patient tolerance and feeding issues such as diarrhea and potential tube clogging.

Mokhalalati 2004¹⁸

- Blenderized formulas had a 200 times higher viscosity and 2 times higher osmolality than commercial formula.
- > There is a wide range of variability in osmolality and viscosity within different locations between blenderized preparations.
- Bentley D. Pediatric Gastroenterology and Clinical Nutrition. London, UK: ReMedica Publishing; 2001.
- •Types of formula and their use: intact enteral formulas. Available at: http://www.csun.edu/cjh78264/tubefeeding/formulas/index. html. Accessed March 9, 2006.
- Mokhalalati JK. Saudi Med J. 2004;25:331
- •Sullivan MM. Asia Pac J Clin Nutr. 2004;13:385
- •Sullivan MM. J Hosp Infect. 2001;49:268

Viscosity

- Mean measured viscosity = 2617 cps
 - range = 2.3 45000 cps
 - Scientific formulas = 10 60 cps

- 3 samples = too viscous to measure!
- Viscosity of reconstituted powder formulas without added food was acceptable and more consistent than blenderized foods

A feeding that is too viscous may clog a feeding tube.

High viscosity feedings with a bolus-syringe delivery which tends to be poorly tolerated by hospitalized patients.

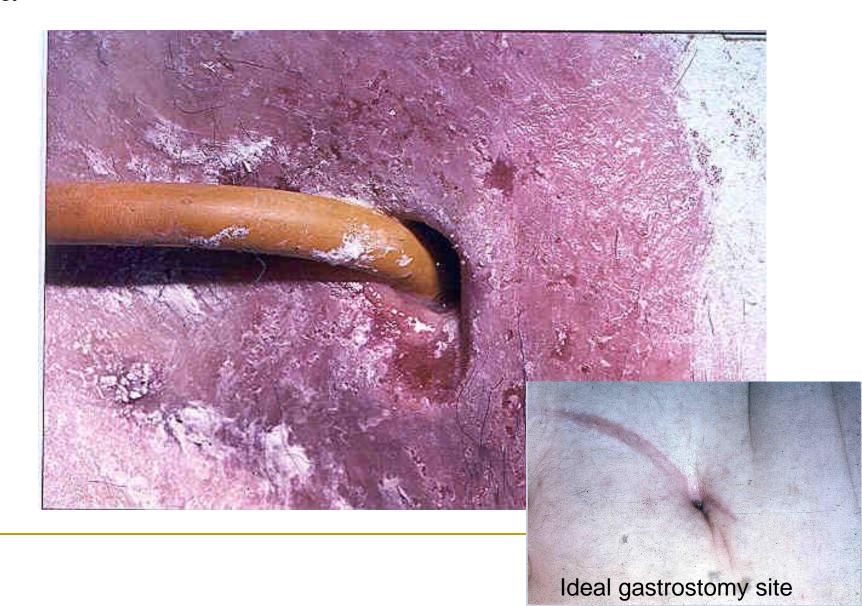
Sullivan et al, Asia Pac J Clin Nutr 2004

CPS: Centi Poise per second

Complications of large bore tubes – needed for high viscosity feeding

- Maxillary sinusitis
- Esophageal erosions
- Gastro-esophageal reflux

Nasal erosion from NG tube



Maxillary sinusitis due to large bore nasogastric tubes

Common cause of fever of "unknown" origin

> Rouby JJ. Am J Resp CCM 1994; 150:776 Van Zanten ARH. Crit Care 2005

Erosion of abdominal wall due to large bore gastrostomy tube, inserted for ease of administration of blenderized diet

Necrotizing soft tissue infection due to large bore gastrostomy tube

Poor outcomes of microbially contaminated blenderized diets

- diarrhea
- gastrointestinal (GI) colonization
- pneumonia
- infection
- prolonged length of hospital stay
- mortality

Anderson KR, JPEN JParenter Enteral Nutr. 1984;8:673
Fernandez-Cruhuet Navajas M. J Hosp Infect. 1992;21:111
Thurn J. J Hosp Infect. 1990;15:203
Casewell MW. BMJ. 1981;282
Freedland CP. JPEN J Parenter Enteral Nutr. 1989;13:18
Pingleton SK. Am J Med. 1986;80:827

Jacobs S. JPEN J Parenter Enteral Nutr. 1990;14:353

Cost factors: Scientific forumulas vs kitchen- prepared enteral diets

 If the cost of procurement of ingredients, storage, cooking, handling, transport, wastage, etc. are considered, commercial preparations are NOT more expensive than kitchen prepared diets

(Unpublished data)

BLENDERIZED DIETS, conclusions

- Current evidence strongly supports the use of scientific enteral preparations in hospitalized patients
- Hospitals should not even provide kitchen-prepared blenderized diets for tube feeding
- For long-term care patients:
 - Oral route or via tubes: Kitchen- prepared diets, esp for cultural reasons,
 - with SUPPLEMENTAL enteral preparations