

Impact of Nutritional Intervention on the overall Outcome of patients undergoing Surgery

Dr Luqman Mazlan
Consultant Colorectal Surgeon Pantai Hospital Kuala Lumpur, Malaysia

- November 2011-December 2011
- Hospital Pulau Pinang
- 76 pharmacists and 324 doctors

KNOWLEDGE
PRACTICE

Findings

ATTITUDES

Attitudes

Majority ambivalent
74.1\% of doctors agree that NST is important

KNOWLEDGE

Knowledge

70.4\% had an average score
58.7% knew normal BMI values
Only 15.7% knew the answer of poor indicator for nutrition status

PRACTICE

Practice
31% screen their patients
47.4\% document nutrition care plans

More then half claim that they did not have a nutrition care proctocol in their department.

Prevalence of malnutrition in the hospital

Reference	N	Tool	Prevalence
Constans 1992	324	A, Bio	$30(\mathrm{M})-\mathbf{4 0}(\mathrm{F}) \%$
Mowé 1994	311	A, Bio, FI	10%
Gazotti 2000	175	MNA	21%
Thomas 2002	837	A,Bio,MNA	$18-53-29 \%$
Pablo 2003	60	SGA,NRI,A,Bio	$63-90-58 \%$
Paillaud 2004	97	A	32%
Stratton 2006	60	MUST	58%

A : anthropometry, Bio : biology, FI : food intake, MNA : mini nutritional assessment, SGA : subjective nutritional assessment, NRI : nutritional risk index, MUST : malnutrition universal screening tool, M : males, F : females

Nutritional Status and Respective Disciplines

PREVALENCE OF MALNUTRITION IN SURGICAL POPULATION AND ITS IMPACT OVER EARLY POST-OPERATIVE OUTCOMES AT A TERTIARY CARE HOSPITAL IN MALAYSIA

OMAID HAYAT KHAN ${ }^{*}$, AMER HAYAT KHAN ${ }^{1}$, ANDEE DZULKERNAIN ZAKARIA ${ }^{2}$, MUHAMAD NIZAM HASHIM ${ }^{2}$ AND SYED AZHAR SYED SULAIMAN ${ }^{1}$

INTERNATIONAL CONFERENCE ON PHARMACY EDUCATION AND PRACTICE

Improving Patient Care through Integration of Education and
Practice

29-31 January 2016

Prospective observational study HUSM over the period of 4 months

Malnutrition Universal Screening Tool (MUST) and Nutritional Risk Index (NRI);
Outcome :surgical site infection (SSI), total length of hospital stay (LOS) and mortality

PREVALENCE OF MALNUTRITION IN SURGICAL POPULATION AND ITS IMPACT OVER EARLY POST-OPERATIVE OUTCOMES AT A TERTIARY CARE HOSPITAL IN MALAYSIA

OMAID HAYAT KHAN ${ }^{1 *}$, AMER HAYAT KHAN ${ }^{1}$, ANDEE DZULKERNAIN ZAKARIA ${ }^{2}$, MUHAMAD NIZAM HASHIM ${ }^{2}$ AND SYED AZHAR SYED SULAIMAN ${ }^{1}$

RESULTS

220 patients enrolled
64 (29.1\%) patients were malnourished.
Malnourished patients exhibited significantly increased
LOS ($p<0.001$)
SSI rate ($p<0.01$)
mortality ($\mathrm{p}<0.001$).

Malnutrition in surgical patients

O 42\% of severely malnourished patients \rightarrow major complications

O 9\% of moderately malnourished patients \rightarrow major complications

Detsky et al. JPEN 1987

Why is a surgical patient malnourished?

Inadequate intake altered tastes, dysphagia

Reduced absorption - Short Bowel Syndrome, Inflammatory bowel disease

Heightened output - Entero-cutaneous Fistula

Increased metabolic demand - cancer, sepsis, diabetes, burns, SURGERY

SURGERY

INFLAMMATION
Metabolic response
Endocrine response

†CELL MULTIPLICATION results in TNUTRIENT NEEDS

GOOD NUTRITION STATUS
Resolution of inflammation Good wound healing

POOR NUTRITION STATUS

 ImmunosuppresionPoor wound healing
Malnutrition

Morbidity and Mortality

INFLAMMATION Metabolic response Endocrine response

POOR NUTRITION STATUS

Immunosuppresion
Poor wound healing
Malnutrition

Wound healing and immunity requires

- Increased requirements
- Energy and protein
- Electrolytes, vitamins, trace elements
- Oxygen and water
- Addition of:
- conditional essential amino acids (glutamine)
- Trace elements (selenium in burns)
- Antioxidants
- Continuous supply of the requirements

NUTRITIONAL MANAGEMENT IN THE PERI-OPERATIVE PERIOD

ESPEN Guidelines on Enteral Nutrition: Surgery including Organ Transplantation ${ }^{\text {T }}$

Clinical Nutrition (2006) 25, 224-244

ESPEN Guidelines on Parenteral Nutrition: Surgery
M. Braga ${ }^{\text {a }}$, O. Ljungqvist ${ }^{\text {b }}$, P. Soeters ${ }^{\text {c }}$, K. Fearon ${ }^{\text {d }}$, A. Weimann ${ }^{e}$, F. Bozzetti ${ }^{\text {f }}$

Clinical Nutrition 28 (2009) 378-386

Clinical Nutrition 36 (2017) 623-650

ESPEN guideline: Clinical nutrition in surgery

Martin Hübner ${ }^{\mathrm{e}}$, Stanislaw Klek ${ }^{\mathrm{f}}$, Alessandro Laviano ${ }^{\mathrm{g}}$, Olle Ljungqvist ${ }^{\mathrm{h}}$, Dileep N. Lobo ${ }^{\mathrm{i}}$ Robert Martindale ${ }^{j}$, Dan L. Waitzberg ${ }^{\mathrm{k}}$, Stephan C. Bischoff ${ }^{1}$, Pierre Singer ${ }^{\mathrm{m}}$

The surgical nutrition process

PRE OPERATIVE

High risk patients given nutrition care plans

The surgical nutrition process

POST OPERATIVE

High risk patients given nutrition care plans

WHO IS HIGH RISK ????

\square
HOSPITAL CANSELOR TUANKU MUHRIZ UNIVERSITI KEBANGSAAN MALAYSIA MEDICAL CENTRE NUTRITIONAL SUPPORT TEAM

Nutritional risk screening NRS 2002 score

Patient Data

Mark on column A and column B then use a ruler to join the two marks to get the BMI.

ESPEN (2006)

ESPEN (2016)

option 1:

$\mathrm{BMI}<18.5 \mathrm{~kg} / \mathrm{m} 2$

option 2:

 combined:weight loss >10\% or >5\% over 3 months +
reduced BMI or a low fat free mass index (FFMI).

PRE-OPERATIVE FASTING

PRE-OPERATIVE

RECOMMENDATION 16

When patients do not meet their energy needs from normal food it is recommended to encourage these patients to take oral nutritional supplements during the preoperative period unrelated to their nutritional status (GRADE A)

PRE-OPERATIVE

Journal of Cachexia, Sarcopenia and Muscle (2017)
Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jcsm. 12170

Pre-operative oral nutritional supplementation with dietary advice versus dietary advice alone in weightlosing patients with colorectal cancer: single-blind randomized controlled trial

Sorrel T. Burden ${ }^{1,2,6 *}$, Debra J. Gibson ${ }^{1,6}$, Simon Lal ${ }^{2,4,6}$, James Hill ${ }^{3,4,6}$, Mark Pilling ${ }^{1}$, Mattias Soop ${ }^{2,4,6}$, Aswatha Ramesh ${ }^{5,6}$ \& Chris Todd ${ }^{1,6}$
Table 6 Dietary intake at each time point for energy and protein intakes, including additional nutrition from oral nutritional supplements at pre-operative time point

		Energy (KJ) Median (IQR)			Protein (g) Median (IQR)	
Time point $n=$ participants Baseline	Control	ONS	P-value	Control	ONS	
$n=93$ Pre-operative $n=70$ Post-operative $n=89$	$6085(4743-7493)$	$6407(4233-8193)$	0.760	$68(48-83)$	$57(41-76)$	0.271

PRE-OPERATIVE

Pre-operative oral nutritional supplementation with dietary advice versus dietary advice alone in weightlosing patients with colorectal cancer: single-blind randomized controlled trial

Sorrel T. Burden ${ }^{1,2,6 *}$, Debra J. Gibson ${ }^{1,6}$, Simon Lal ${ }^{2,4,6}$, James Hill ${ }^{3,4,6}$, Mark Pilling ${ }^{1}$, Mattias Soop ${ }^{2,4,6}$, Aswatha Ramesh ${ }^{5,6}$ \& Chris Todd ${ }^{1,6}$
rable 3 Intention to treat analysis for number of participants with chest, surgical site, or urinary tract infections

	Control		Intervention		P-value
	$n=45$ (\%)	95\% CI	$n=55(\%)$	95\% CI	
Surgical site infection	17 (38)	25.1 to 52.4	11 (20)	11.6 to 32.4	${ }^{\text {a }} 0.044$
Chest intection	3 (7)	2.3 to 17.9	5 (9)	3.9 to 19.6	0.359
Urinary tract infection	6 (13)	6.3 to 26.2	4 (7)	2.9 to 17.3	${ }^{\text {a }} 0.315$

[^0]
Espen RECOMMENDATION 1 :

- Preoperative fasting from midnight is unnecessary in most patients.
- Patients undergoing surgery, who are considered to have no specific risk of aspiration, shall drink clear fluids until 2 hours before anaesthesia.
- Solids shall be allowed until 6 hours before anaesthesia

Grade of recommendation A

Preoperative fasting time

Gastric emptying of water and other inert, non-caloric fluids follows an extremely fast exponential curve with a mean half-time of 10 min

When do you start nutritional support preoperatively?

ESPEN 2009

Patients who do not meet energy needs from normal food need to take nutritional supplements preop (better before admission)
-Enteral always preferable
-Consider + PN if < 60\% ot caloric requirenienii is not met enterally

- In normal patients when it is anticipated that nost surgery patient won't eat for >7 days.
-Patients who do not meet energy needs from normal food need to take nutritional supplements preop (better before admission)
-Enteral always preferable
-Consider +PN if < 50\% of caloric requirement is not met enterally
- In normal patients when it is anticipated that post surgery patient won't eat for >5 days.

Contraindications

Three conditions are incompatible with enteral nutrition:

- severe shock state
- nonfunctional gut (i.e.

anatomic disruption,
obstruction, ischemia)
- severe peritonitis

How much calories to give ? ESPEN Guidelines 2009: Surgery

- Calorie Requirement(s):
- The commonly used formula of $25 \mathrm{kcal} / \mathrm{kg}$ ideal body weight
- Under conditions of severe stress requirements may approach 30 kcal/kg ideal body weight
- (Grade B)

kcal/kg/day

Maintenance

Minor infection, underN

Major surgery, sepsis

Burns

INDIRECT CALORIMETRY

Subject
Dante Alighieri
$\begin{array}{llll}\text { Gender Age } & \text { Weight } & \text { Height } \\ \text { M } & 33 \mathrm{y} & 78 \mathrm{~kg} & 180 \mathrm{~cm}\end{array}$

100\% 10:31

The patient's journey in the surgical road

INTRAOPERATIVE

- Gentle tissue handling
- Reduce ileus
- Reduce infection

Surgical nutrition pathways: Intra \& Post-operative Period

ESPEN Guidelines on Enteral Nutrition (2006) and Parenteral Nutrition (2009)

OPEN GASTROSTOMY / JEJUNOSTOMY

The patient's journey in the surgical road

Is post-operative interruption of nutrition necessary ?

NO

In general, oral nutritional intake shall be continued after surgery without interruption

Grade of recommendation A

WHEN TO RESTART FEEDING?

Recommendation 5:

Oral intake, including clear liquids, shall be initiated within hours after surgery in most patients.

Grade of recommendation \mathbf{A}

RATIONALE FOR EARLY ENTERAL FEEDING

- provide nutrients
- maintain GI integrity

WHEN TO RESTART FEEDING?

Nutrition support therapy in the form of early EN be initiated within 24-48 hours in the critically ill patient who is unable to maintain volitional intake.

Figure 1. Early enteral nutrition (EN) vs delayed EN, mortality.

A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients

A H Beattie, A T Prach, J P Baxter, C R Pennington

Eligible patients $\mathrm{n}=111$

Not randomised $\mathrm{n}=2$ (refusal to participate)

Figure 1 Flow chart describing the progress of patients through the clinical trial.

POST-OPERATIVE

A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients

A H Beattie, A T Prach, J P Baxter, C R Pennington

Table 4 Changes in nutritional variables at each assessment point from time of admission

	Inclusion	2 weeks	Reduced weight loss			10 weeks	*Linear trend		**Difference		
			4 weeks	6 weeks	8 weeks		F	p		F	p
Weight loss (kg)											
Control	2.28 (1.28)	4.21 (2.44)	5.13 (3.23)	5.68 (3.90)	5.96 (4.21)	5.86 (4.33)	33.6	<0.001	(1)	71.53	<0.001
Treatment	2.31 (1.36)	3.40 (2.94)	3.40 (3.26)	2.48 (3.58)	1.89 (4.27)	1.53 (4.23)	5.48	0.02	(2)	4.34	0.001
Decrease in ISF (mm)											
Control	0.10 (0.32)	0.32 (0.90)	0.51 (1.19)	0.72 (1.32)	0.80 (0.42)	0.82 (1.41)	3.09	0.01	(1)	22.01	<0.001
Treatment	0.19 (0.68)	0.11 (0.94)	0.26 (0.77)	0.07 (0.82)	0.02 (0.90)	0.16 (1.73)	0.42	NS	(2)	1.44	NS
Decrease in MAMC											
Control	0.56 (1.30) $0.55(0.75)$	$1.01(1.80)$ $0.86(0.94)$	081 (082)	071 (083)	1.37 (1.90) 0.61 (0.02)	$1.28(1.73)$ $0.42(101)$	4.88 210	-0.03	(1) (2)	17.16 1.64	$\begin{aligned} & <0.001 \\ & \text { NS } \end{aligned}$
Decrease in grip strength $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$											
Control	1.56 (1.82)	2.51 (3.13)	2.45 (2.99)	2.16 (2.41)	2.10 (2.35)	1.93 (2.21)	0.01	NS	(1)	13.58	<0.001
Treatment	1.73 (1.87)	1.82 (1.92)	1.95 (2.80)	1.17 (1.64)	1.04 (2.00)	0.82 (2.10)	9.94	<0.005	(2)	2.12	NS

Values are mean (SD).
*One way ANOVA for differences between time points. **Two way ANOVA: (1) difference between control and treatment groups; (2) difference between time points.

PROTEIN DISTRIBUTION ALSO MATTERS

Paddon-Jones \& Rasumussen. Curr Opin Clin Nutr Metab
Care. 2009;12(1):86-90.

Pharmacologic Options for the Treatment of Sarcopenia
Morley J, Calcif Tissue Int 2016;98:319-333

Modality	Effect	Side effects
Resistance exercise	Increase muscle mass, strength, and power	Potential for falls; muscle injuries
Protein (essential amino acids)	Increase muscle mass; synergy with	Minimal increased creatinine levels
Testosterone	RESISTANCE EXERCISE Increase muscle mass, strength, power, and function	Fluid retention; increased hematocrit; short term worsening of sleep apnea; effects on prostate cancer; possible increase in cardiovascular events
Selective androgen receptor modulators (SARMS)	Increase muscle mass; small increase in power	Increased cardiac failure
Growth hormone	In Protein ase	Arthralgia; muscle pain; edema; carpal tunnel syndrome; hyperglycemia
Ghrelin agonists		Fatigue; atrial fibrillation; dyspnea
Myostatin antibodies	Increased lean body mass and handgrip	Urticaria; aseptic meningitis; diarrhea; confusion; fatigue
Activin 11R antagonists	Increase thigh muscle volume, muscle mass, and $6-\mathrm{min}$ walk distance	Acne; involuntary muscle contractions
Angiotensin converting enzyme inhibitor (perindopril)	Increased distance walked; decreased hip fracture	Hypotension; hyperkalemia; muscle cramps; numbness
Espindolol ($\mathrm{B}_{1} / \mathrm{B}_{2}$ adrenergic receptor antagonist)	Maintains muscle mass; increased hand grip strength	?
Fast skeletal muscle troponin activators (Tirasemtiv)	Improves muscle function	?

MANAGEMENT
 ALGORITHM

PRE-OP

MALNUTRITION

POST-OP

TAKE HOME MESSAGE

ERAS

Figure 1 Main elements of the ERAS protocol.

KEY ASPECTS OF PERI-OPERATIVE NUTRITIONAL CARE

- integration of nutrition into the overall management of the patient
- avoidance of long periods of preoperative fasting
- re-establishment of oral feeding as early as possible after surgery
- start of nutritional therapy early, as soon as a nutritional risk becomes apparent
- metabolic control e.g. of blood glucose
- reduction of factors which exacerbate stress-related catabolism or impair gastrointestinal function
- minimize time on paralytic agents for ventilator management in the postoperative period
- early mobilisation to facilitate protein synthesis and muscle function.

INCIDENCE OF MALNUTRITION IS HIGH AMONG SURGICAL PATIENTS

MALNUTRITION IS ASSOCIATED WITH POORER OUTCOMES

INCLUDE NUTRITION MANAGEMENT BEFORE AND AFTER SURGERY TO IMPROVE OUTCOMES

EARLY NUTRITIONAL INTERVENTION IS ESSENTIAL IN HIGH RISK PATIENTS

AVOID THE USE OF IMMUNE MODULATING LIPIDS IN ALL CASES

"Your time on earth has been extended.

Go back and thank

 your dietician"THANK YOU

[^0]: Cl_{5} confidence interval.
 ${ }^{3} \chi^{2}$.
 'Fisher's exact test.

