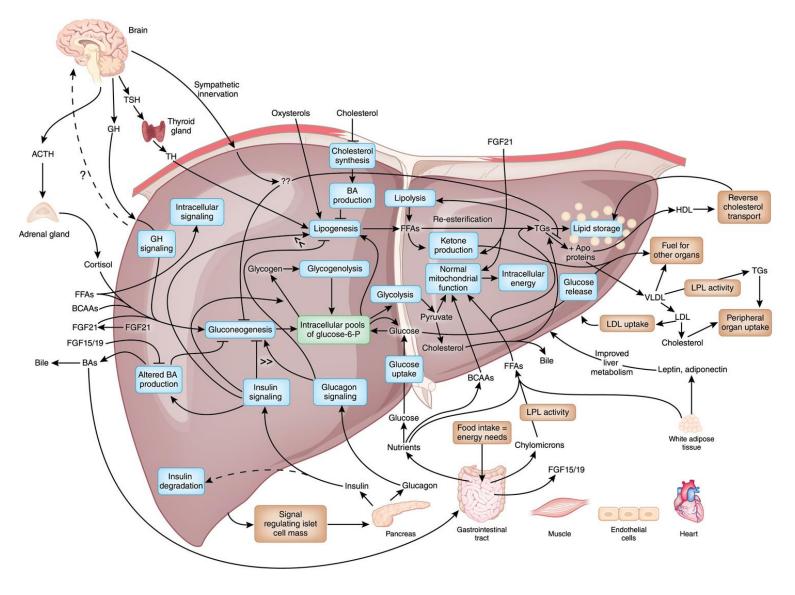
Nutritional issues in the peri transplant period

Prof Anupam Sibal MD, FIAP, FIMSA, FRCP(Lon), FRCP(Glas), FRCPCH, FAAP Group Medical Director, Apollo Hospitals Group

> Clinical Professor Faculty of Medicine and Health Sciences Macquarie University, Sydney, Australia

Dr Vidyut Bhatia, Dr Akshay Kapoor, Dr Smita Malhotra, Dr Karunesh, Dr Ishaq Malik, Dr Ravi Bharadwaj

> Pediatric Gastroenterologists and Hepatologists Apollo Centre for Advanced Pediatrics Indraprastha Apollo Hospital



Nutritional issues before transplant

Decreased dietary intake

Anorexia

Altered taste

Unpalatable diet

Nausea / vomiting

Suchy 2014

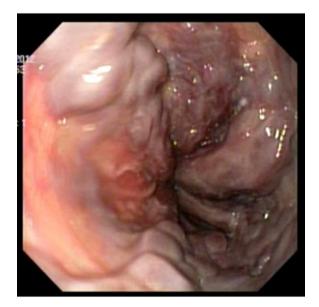
Early satiety due to:

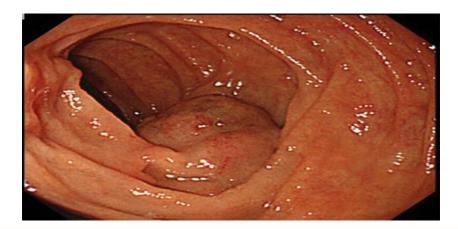
Ascites

Organomegaly

Impaired digestion and absorption

Reduced luminal bile




Pancreatic insufficiency

Increased requirements

Suchy 2014

Increased requirements

Inflammation

Recovery from major insults (infection)

Increased work of breathing (abdominal distention)

Macronutrient disturbances

Carbohydrates	Proteins - negative balance	Lipids - increased fat oxidation
Low glycogen stores - Hypoglycemia	Gluconeogenesis	Lipolysis
Insulin resistance -	Decreased synthesis	Malabsorption - fat soluble vitamin
post prandial hyperglycemia	Increased catabolism	deficiency
	Increased AAA/BCAA ratio	Associated pancreatic insufficiency

WJG 2014

Micronutrients

Fat soluble vitamins	Water soluble vitamins	Trace elements
Vitamin A deficiency 69% Vitamin D 25% low,17% radiological rickets,11% fractures Vitamin E 62-75% Vitamin K 25%	Associated malabsorption	Zn deficiency 40% Fe 33% Ca /Mg (vitamin D deficiency and fat binding in lumen) Selenium deficiency (cardiomyopathy) Cu / Mn excess (basal ganglia deposition)
		gangia acposition)

WJG 2014

Assessment of malnutrition in CLD

AAP Nutrition 2014

History

Feeding (amount/restriction) Diarrhea, vomiting (loss of calories) Pale stools, pruritus (cholestasis/fat malabsorption) Bleeding, bruises (vitamin k) Night blindness Bone fractures

Anthropometry

Weight for height and weight for age - deceptive

Height for age decreased - chronic malnutrition

MUAC is more sensitive than weight/height

Physical examination

Edema	Protein deficiency
Cachexia	Protein + Fat deficiency
Rickets	Vit D deficiency
Bruising	Vit K
Alopecia	PEM, EFA, Zn
Pallor	Fe, B12, Folic acid
Glossitis	B complex
Poor dentition	Vit D
Skin dryness ,peeling	EFA, Zn, Niacin
Depressed or absent reflexes	Vit E

Nutritional management

Calorie 130-150% of ideal body weight

Carbohydrate up to 20gm/kg/day - sugar monitoring during fasting, illness or reduced intake

Protein 2 - 4gm/kg/day unless in encephalopathy

Fat up to 8gm/kg/day, 30-40% of total fat as MCT

AAP 2014 PCNA 2009

Ascites

Salt and fluid restriction

Encephalopathy

Protein restriction to 1g/kg/day BCAA

Supplementation

Vitamin /mineral	Route	Dose
A	Oral	5000-25000IU/day
D	Oral	400-1200IU/day
E	oral	50-400IU/day or 15- 25IU/kg/day of TPGS
K	Oral/Parenteral	2.5 mg twice weekly/2.5mg monthly
Water soluble	Oral	2 times RDA
Calcium	Oral	50-100 mg/kg/day
Phosphorus	Oral	25-50mg/kg/day
Zinc	Oral	1mg/kg/day
Iron	Oral	5-6mg/kg/day

Indian pediatrics 2014

Outcomes of pre transplant malnutrition

Increased operative blood loss, transfusion Long ICU stay Infection Higher mortality Post transplant nutritional lag

Pre transplant malnutrition outcome

Pikul et al	Prolonged ventilator support Increased tracheostomy incidence More days of ICU stay
Stephenson et al	Increased blood product requirement More days of hospital stay
Merli et al	More days of ICU / hospital stay Increased infection incidence
Figueiredo et al	More days in ICU Increased infection incidence

WJG 2014

Post op catabolic state - 1st 2 weeks

Pre operative malnutrition

Stress of surgery

Immunosuppression

Organ dysfunction

Sepsis

Optimizing nutrition during this period is critical for wound healing and hepatocyte recovery

Surg today 2015 Kaido, Mori et al nutrition 2012

Post operative feeding

Within 48hrs of uncomplicated surgery, once ileus settles

Continuous nasogastric feeding

Polymeric feeds, semi-elemental feeds if intolerance

Oral feeding after enteral feeds are tolerated

Hepatobilary surg nutr 2015

Lower incidence of infections (29.4 % of EN group vs 63.2 of control)

Bile duct complication 5.9% vs 31.6 in control group

Medicine nov 2015

Enteral Nutrition

Stimulates bile/portal flow

Prevents mucosal atrophy

Preserves intestinal structure and function

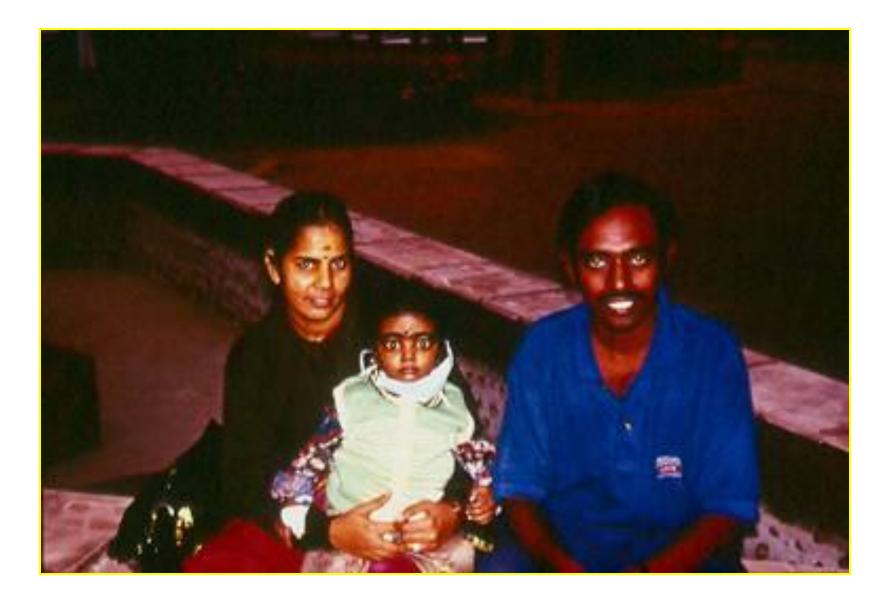
Transplant proc 2014

Specific nutrients post transplant

Decrease infection post transplant	Improve synthetic function	Shorten post transplant catabolic state	Shorten post transplant hospital stay
Lactic acid synbiotic	Glutamine	BCAA	BCAA Omega 3 FA
Whey hydrolyzed peptide			
Omega 3 FA			
Arginine			
BCAA			

Hepatobiliary surg nutr 2015

It takes a village to raise a child



Perforations

Ventilation

TPN 100 days in hospital

Case Reports

Indian Pediatrics 2001; 38: 287-291

India's First Successful Pediatric Liver Transplant

V. Poonacha A. Sibal A. S. Soin M. R. Rajashekar D. V. Rajakumari


From the Apollo Center for Advanced Pediatrics, Indraprastha Apollo Hospital, New Delhi 110 044, India.

Correspondence to: Dr. A. Sibal, Consultant Pediatric Hepatologist and Gastroenterologist, Apollo Center for Advanced Pediatrics, Indraprastha Apollo Hospital, New Delhi 110 044, India.

Manuscript received: March 28, 2000; Initial review completed: April 7, 2000; Revision accepted: August 22, 2000

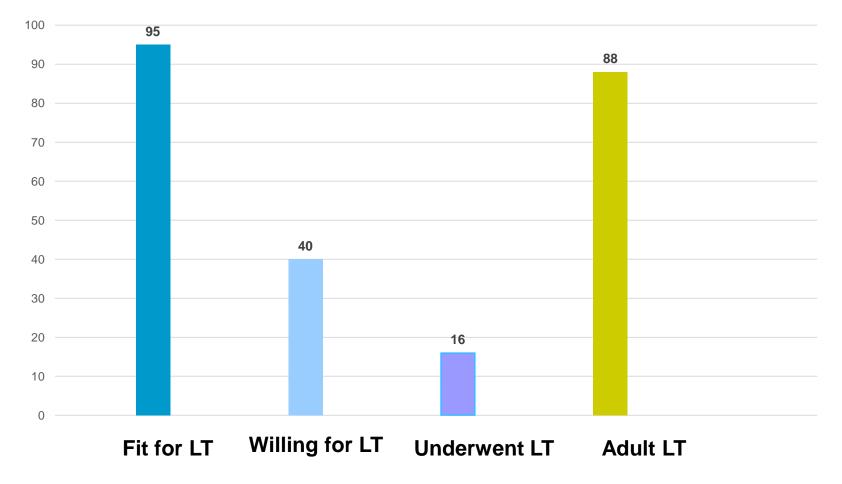
Liver transplantation is an accepted therapy for end stage liver failure in the developed world(1). Till recently the option of liver transplantation was not available to the developing world due to the prohibitive costs, lack of expertise and sophisticated infrastructure(2,3). We report the first successful pediatric liver transplant in India in a child with extrahepatic biliary atresia (EHBA).

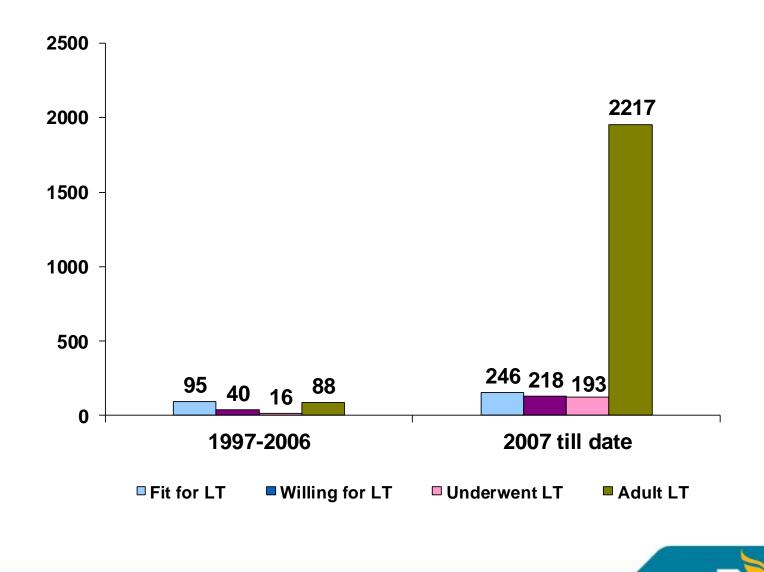
Indian Pediatrics

Fifteen Years of Liver Transplantation in India

ANUPAM SIBAL, VIDYUT BHATIA AND SUBASH GUPTA


From the Apollo Centre for Advanced Pediatrics, Indraprastha Apollo Hospital, New Delhi 110 076, India. anupamsibal@apollohospitals.com


VOLUME 50-NOVEMBER 15, 2013



The watershed

What has contributed to success?

Pre-operative nutrition/management

Better surgical expertise

Improvements in intensive care

Standardized post transplant care

LT experience 2514, pediatric 209

BA	79
Metabolic liver diseases	45
Cryptogenic	34
ALF	19
BCS	08
NNH	06
AIH	03
Нер В	03
Hyper oxaluria	02*
Poisoning	02
Hepatoblastoma	02
PVT	01**
Нер С	01
HCC	01
Chronic rejection	01
 * combined LK ** re transplant 	

Busiest solid organ transplant centre in the world

Year	2012	2015
Kidney	849	1217
Liver	351	410
Total	1200	1627

"Alone we can do so little; together we can do so much"

Helen Keller

"Let food be thy medicine and medicine be thy food" ~Hippocrates

