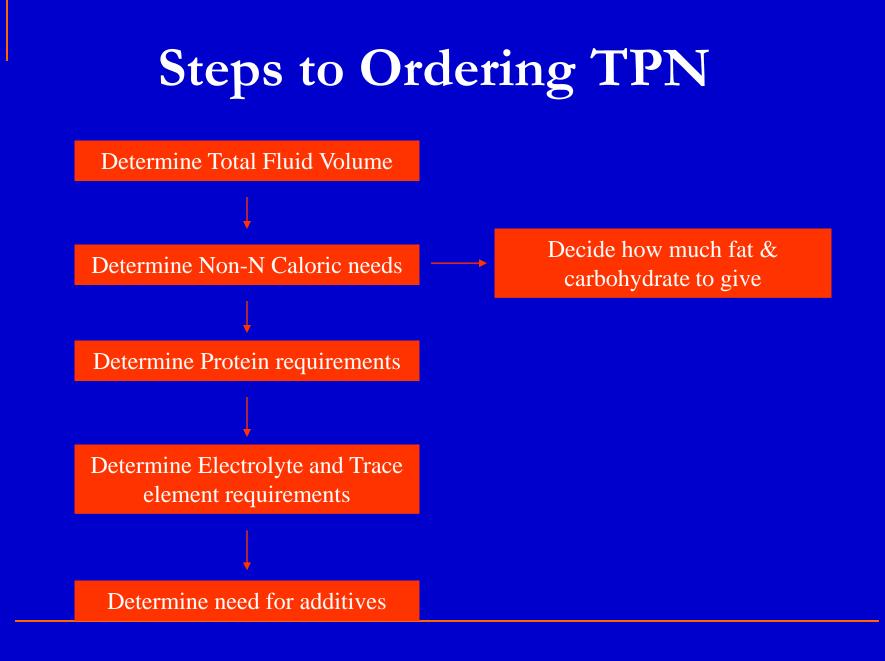
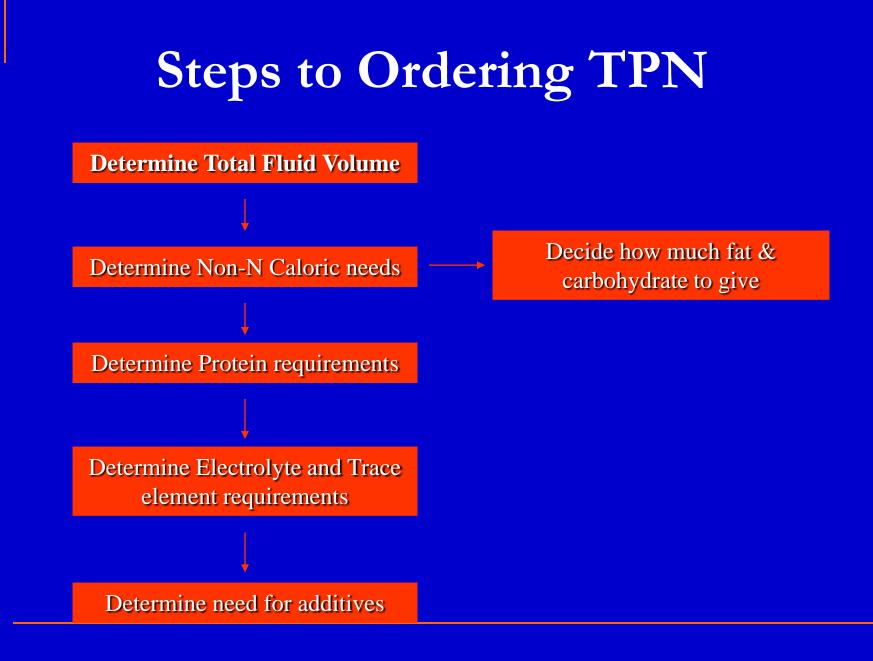
TOTAL PARENTERAL NUTRITION

Dr. N. Ramakrishnan AB (Int Med), AB (Crit Care), AB (Sleep Med), MMM, FACP, FCCP, FCCM, FICCM, FISDA Director, Critical Care Services, Apollo Hospitals

What to Do Before Starting TPN

Nutritional Assessment

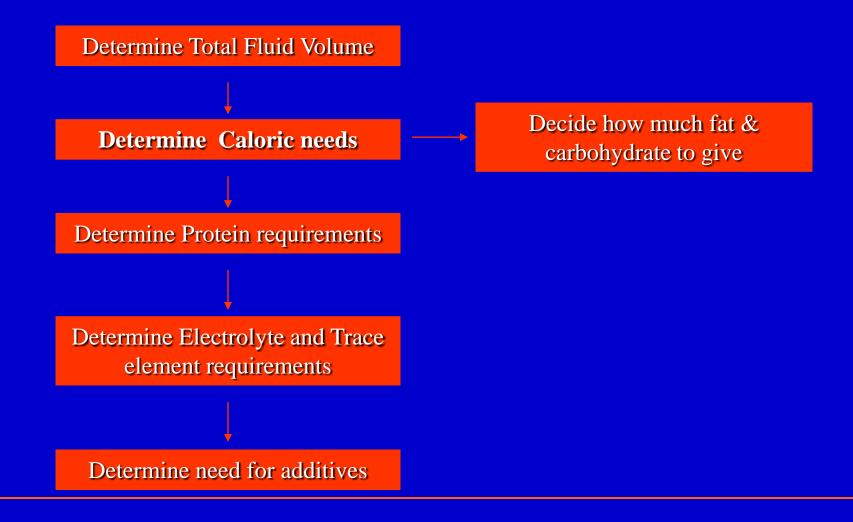

Venous access evaluation


Baseline weight

Baseline lab investigations

Baseline Lab Investigations

Full blood count
Coagulation screen
Screening Panel # 1
Ca⁺⁺, Mg⁺⁺, PO₄²⁻
Lipid Panel # 1
Other tests when indicated



How Much Volume to Give?

- Cater for maintenance & on going losses
- Normal maintenance requirements
 By body weight
 alternatively, 30 to 50 ml/kg/day
 Add on going losses based on I/O chart
- Consider insensible fluid losses also
 e.g. add 10% for every °C rise in temperature

Steps to Ordering TPN

Based on Total Energy Expenditure

Can be estimated using predictive equations TEE = REE + Stress Factor + Activity Factor

Can be measured using metabolic cart

REE Predictive equations *Harris-Benedict Equation Males: REE* = 66 + (13.7W) + (5H) - 6.8A *Females: REE* = 655 + (9.6W) + 1.8H - 4.7A

Schofield Equation

Rule of Thumb - 25 to 30 kcal/kg/day

Stress Factor

Malnutrition	- 30%	Moderate infection	+ 20%
Peritonitis	+ 15%	Severe infection	+ 40%
Soft tissue trauma	+ 15%	<20% BSA burns	+ 50%
Fracture	+ 20%	20-40% BSA burns	+ 80%
Fever (per °c rise)	+ 13%	>40% BSA burns	+ 100%

Activity Factor

Bed-bound + 20%

- Ambulant + 30%
- Active + 50%

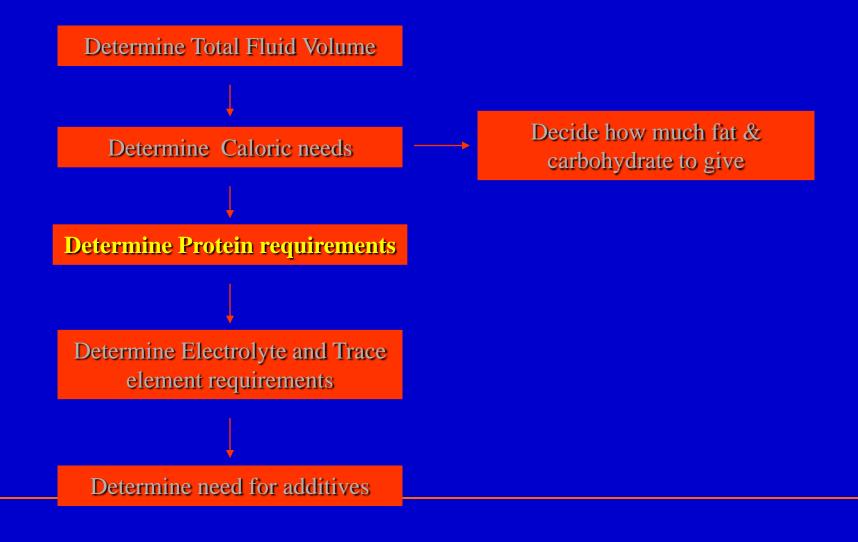
In obesity, energy expenditure must be calculated on ideal body weight.

Malnutrition

In malnutrition energy expenditure must be calculated on actual body weight.

How Much CHO & Fats?

 *Too much of a good thing causes problems"
 Not more than 4 mg / kg / min Dextrose (less than 6 g / kg / day) *Rosmarin et al, Nutr Clin Pract 1996,11:151-6*


Not more than 0.7 mg / kg / min Lipid (less than 1 g / kg / day)

Moore & Cerra, 1991

How Much CHO & Fats?

- Fats usually form 25 to 30% of calories
 Not more than 40 to 50%
 Increase usually in severe stress
 Aim for serum TG levels < 350 mg/dl or 3.95 mmol/L
- CHO usually form 70-75 % of calories

Steps to Ordering TPN

How Much Protein to Give?

Based on calorie : nitrogen ratio

Based on degree of stress & body weight

Based on Nitrogen Balance

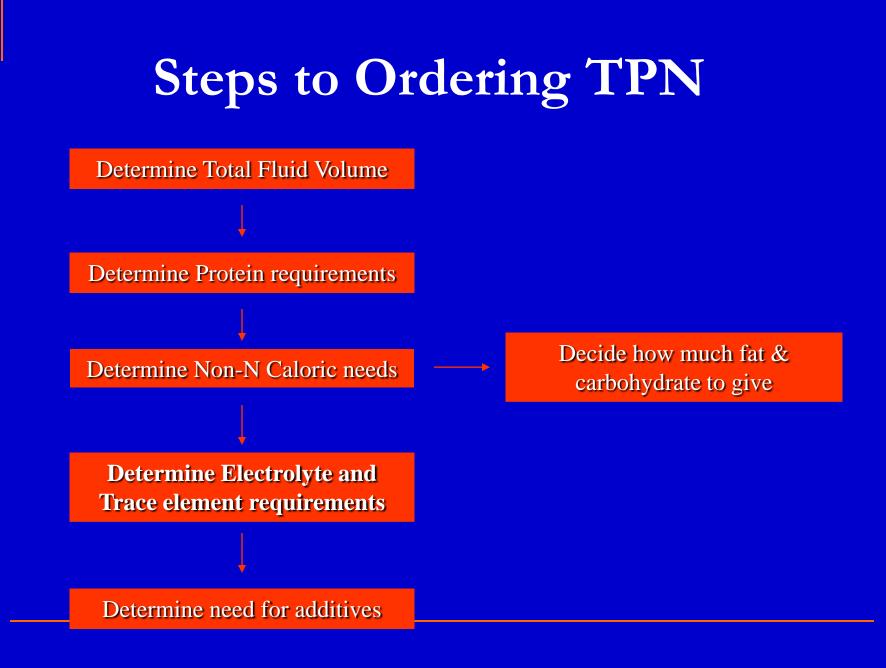
Calorie : Nitrogen Ratio

Normal ratio is 150 cal : 1g Nitrogen

Critically ill patients 85 to 100 cal : 1 g Nitrogen in

Based on Stress & BW

Non-stress patients0.8 g / kg / dayMild stress1.0 to 1.2 g / kg / dayModerate stress1.3 to 1.75 g / kg / daySevere stress2 to 2.5 g / kg / day


Protein Requirements

- 1.2 to 1.5 g protein/kg IBW mild or moderate stress
 Up to 2.5 g protein/kg IBW
 - burns or severe trauma

Based on Nitrogen Balance

Aim for positive balance of 1.5 to 2g / kg / day

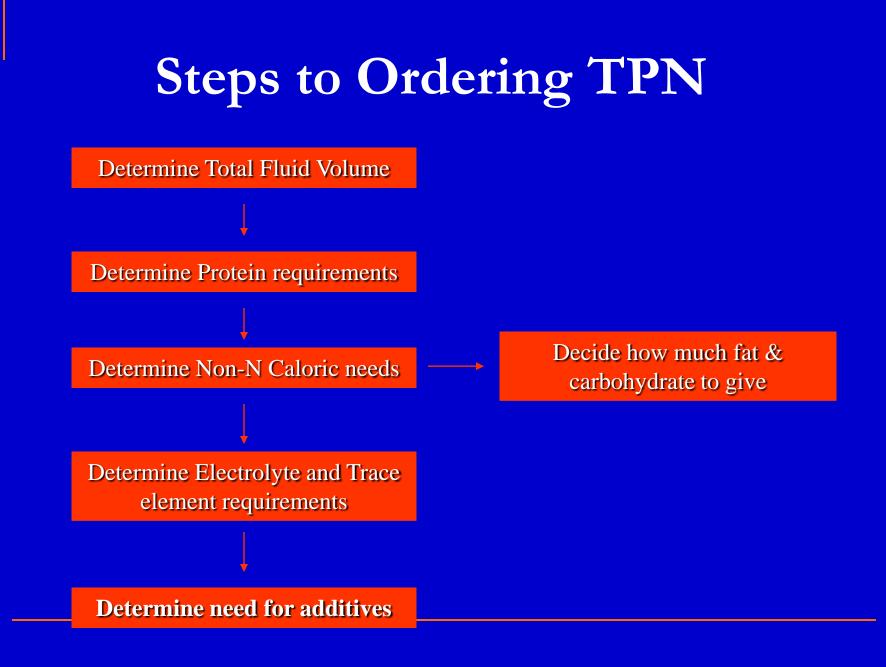
Electrolyte Requirements

 Cater for maintenance + replacement needs

 Na⁺
 1 to 2 mmol/kg/d
 (or 60-120 meq/d)

 K⁺
 0.5 to 1 mmol/kg/d
 (or 30 - 60 meq/d)

 Mg⁺⁺
 0.35 to 0.45 meq/kg/d
 (or 10 to 20 meq /d)


 Ca⁺⁺
 0.2 to 0.3 meq/kg/d
 (or 10 to 15 meq/d)

 PO₄²⁻
 20 to 30 mmol/d

Trace Elements

Total requirements not well established Commercial preparations exist to provide RDA

- Zn 2-4 mg/day
- Cr 10-15 ug/day
- Cu 0.3 to 0.5 mg/day
- Mn 0.4 to 0.8 mg/day

Other Additives

Vitamins

Give 2-3x that recommended for oral intake
us give 1 ampoule MultiVit per bag of TPN
MultiVit does not include Vit K

can give 1 mg/day or 5-10 mg/wk

Other Additives

Medications

Insulin

- can give initial SI based on sliding scale according to hypocount q6h (keep <11 mmol/l)
- once stable, give 2/3 total requirements in TPN & review daily
- alternate regimes

0.1 u per g dextrose in TPN
10 u per litre TPN initial dose

Other medications

Different Ways of PN

Multiple container system

Two chamber bags

Three chamber all in one system (3 in 1)

Multiple Container System

Allows simultaneous administration of amino acids, dextrose and lipid solutions in different concentrations.

Multiple Container System Disadvantages

Errors in mixing causes incompatibilities
 Needs frequent bottle change, increasing risk of contamination

All in One System

 Amino acids, dextrose and lipid solutions in 3 different chambers

Amino acids and dextrose to be mixed first

Finally lipid solution is mixed

ALL IN ONE SYSTEM

Simultaneous Administration of all components

Simultaneous administration of amino acids and calories

- Less metabolic disturbance
- Gives a better N₂ balance

Decreased risk of catheter infection due to single connection

Permits Peripheral administration

ALL IN ONE SYSTEM

CANNOT PROVIDE FOR ALL TYPES OF PATIENTS ESPECIALLY PAEDIATRICS

CANNOT MANIPULATE VOLUME

STILL NEED ASEPTIC TECHNIQUES TO ADD VITAMINS AND TRACE ELEMENTS

General Principles for Administering TPN

- Hypertonic TPN should be administered through a central venous line
- Feeding line to be inserted by an experienced operator with all aseptic precautions
- Feeding line not to be used for any other purpose
- Solutions to be administered slowly (over 12 24 hrs)
- TPN bags to be changed using full aseptic techniques
- Once prepared, no other additions should be made
- The IV tubes can be changed with every bag
- No three way to be used

Safe Concentrations for Infusion

Nutrient	Central	Peripheral	
Dextrose	25%,50%	5%, 10%	
Amino acids	10%	5%	
Lipids	10%,20%	10%,20%	

Peripheral Line Solutions

Osmolality < 700 mosm/kg</p>

Total Kcal limited by concentration and ratio to volume being administered

PN – Types of Infusion

- Continuous Total volume administered over 24hrs
- Cyclic Volume is administered in one period, with infusion adjustments and a period of rest

 Selection of infusion type depends on patients condition

Use parenteral infusion pump

Parenteral Nutrition

Infusion Schedules

Infusion Schedules

Continuous PN

Non-interrupted infusion of a PN solution over 24 hours via a central or peripheral venous access

Continuous PN

Advantages

- Well tolerated by most patients
- Requires less manipulation
 - decreased nursing time
 - decreased potential for "touch" contamination

Continuous PN

Disadvantages

- Persistent anabolic state
 - altered insulin : glucagon ratios
 - increased lipid storage by the liver
- Reduces mobility in ambulatory patients

Infusion Schedules

Cyclic PN

The intermittent administration of PN via a central or peripheral venous access, usually over a period of 12 – 18 hours

Patients on continuous therapy may be converted to cyclic PN over 24-48 hours

Cyclic PN

Advantages

- Approximates normal physiology of intermittent feeding
- Maintains:
 - Nitrogen balance
 - Visceral proteins
- Ideal for ambulatory patients
 - Allows normal activity
 - Improves quality of life

Cyclic PN

Disadvantages

- Incorporation of N₂ into muscle stores may be suboptimal
 - Nutrients administered when patient is less active
- Not tolerated by critically ill patients
- Requires more nursing manipulation
 - Increased potential for touch contamination
 - Increased nursing time

Stopping TPN

- Stop TPN when enteral feeding can restart
- Wean slowly to avoid hypoglycaemia
- Monitor hypocounts during wean
 - Give IV Dextrose 10% solution at previous infusion rate for at least 4 to 6h
 - Alternatively, wean TPN while introducing enteral feeding and stop when enteral intake meets TEE

TPN Monitoring

Clinical Review Lab investigations

Adjust TPN order accordingly

Clinical Review

- Clinical examination
- Vital signs
- Fluid balance
- Catheter care
- Sepsis review
- Blood sugar profile
- Body weight

Lab investigations

Full Blood Count Renal Panel # 1 ■ Ca++, Mg++, PO42-Liver Function Test Iron Panel Lipid Panel Nitrogen Balance

weekly, unless indicated daily until stable, then 2x/wk daily until stable, then 2x/wk weekly weekly 1-2x/wk weekly

Nutritional Balance

Nutritional Balance = Ninput - Noutput

- 1 g N = 6.25 g protein
- Ninput = (protein in g \equiv 6.25)
- Noutput = 24h urinary urea nitrogen + nonurinary N losses (estimated normal non-urinary Nitrogen losses about 3-4g/d)

Complications Related to TPN

Mechanical Complications
 Metabolic Complications
 Infectious Complications

Mechanical Complications

Related to catheter in situ

Venous thrombosis Catheter occlusion

Hepatic complications

Biochemical abnormalities

Cholestatic jaundice

- too much calories (carbohydrate intake)
- **too** much fat

Acalculous cholecystitis

Abnormalities related to excessive or inadequate administration
hyper / hypoglycaemia
electrolyte abnormalities
acid-base disorders
hyperlipidaemia

Abnormalities related to excessive or inadequate administration
hyper / hypoglycaemia
electrolyte abnormalities
acid-base disorders
hyperlipidaemia

Hepatic complications

Biochemical abnormalities

Cholestatic jaundice
 too much calories (carbohydrate intake)
 too much fat

Acalculous cholecystitis

Infectious Complications

Insertion site contamination Catheter contamination *improper insertion technique* use of catheter for non-feeding purposes contaminated TPN solution contaminated tubing Secondary contamination septicaemia

The most significant cause of morbidity during TPN is overfeeding.

Parenteral Nutrition

Home **TPN**

Home TPN

- Safety and efficacy depend on:
 - Proper selection of patients
 - Adequate discharge planning/education
 - Home monitoring protocols

Home TPN

Patient selection

- Reasonable life expectancy
- Demonstrates motivation, competence, compliance
- Home environment conducive to sterile technique

Home TPN: Discharge Planning

- Determination whether patient meets payer criteria for PN; completion of CMN forms
- Identification of home care provider and DME supplier
- Identification of monitoring team for home
- Conversion of 24-hour infusion schedule to cyclic infusion with monitoring of patient response

Home TPN

Cost effective

Quicker discharge from hospital

- Improved rehabilitation in the home
- Reduced hospital readmissions

PN can provide Partial or Total Nutrition

Metabolic monitoring is a must

