Nutrition in Critically ill Burns & Trauma

Banambar Ray Apollo Hospitals, Bhubaneswar

Nutrition in Critically III Burns & Trauma

Who is a critically ill ?

 Any body who needs constant monitoring and therapy to prevent and treat organ-system dysfunction is a critically ill patient

Nutrition in Critically III Burns & Trauma

Who is a critically ill ?

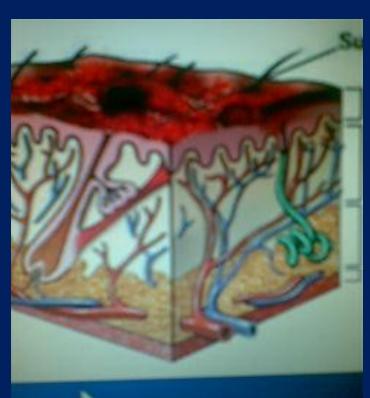
- Any body who needs constant monitoring and therapy to prevent and treat organ-system dysfunction is a critically ill patient
- Critically ill burns & trauma patients have a very high metabolic response and are potentially on the verge of decompensation of organ function

• Type of burn injury

injury from flameinjury from hot liquidsinjury from radiationinjury from chemicalsinjury from electrocution

• Type of burn injury

injury from flame injury from hot liquids injury from radiation injury from chemicals injury from electrocution


Category of burn injury

1st degree (epidermal)

2nd degree (superficial dermal & deep dermal)

3rd degree (full thickness) & 4th degree (beneath the skin upto bones)

- Type of burn injury
 - injury from flameinjury from hot liquidsinjury from radiationinjury from chemicalsinjury from electrocution
- Category of burn injury
 - 1st degree (epidermal)

- 2nd degree (superficial dermal & deep dermal)
- 3rd degree (full thickness) & 4th degree (beneath the skin upto bones)

- Type of burn injury
 - injury from flameinjury from hot liquidsinjury from radiationinjury from chemicalsinjury from electrocution
- Category of burn injury
 - 1st degree (epidermal)

- 2nd degree (superficial dermal & deep dermal)
- 3rd degree (full thickness) & 4th degree (beneath the skin upto bones)

- Type of burn injury
 - injury from flameinjury from hot liquidsinjury from radiationinjury from chemicalsinjury from electrocution
- Category of burn injury
 - 1st degree (epidermal)

- 2nd degree (superficial dermal & deep dermal)
- 3rd degree (full thickness) & 4th degree (beneath the skin upto bones)

- Type of burn injury
 - injury from flameinjury from hot liquidsinjury from radiationinjury from chemicalsinjury from electrocution
- Category of burn injury
 - 1st degree (epidermal)

- 2nd degree (superficial dermal & deep dermal)
- 3rd degree (full thickness) & 4th degree (beneath the skin upto bones)

metabolic changes in burns & trauma

• ebb phase (12–24h): \downarrow metabolic rate, \downarrow temp, \downarrow O2 consumption, \downarrow BP, vasoconstriction

 flow phase(beyond 24 h until recovery): hypercatabolism, utilisation of fat as energy source

 anabolic phase (onset of recovery): improved appetite, diuresis, stable vital signs

metabolic changes in burns & trauma

- insulin release & insulin resistance: this can persist for
 > 12 months and impaired glucose
 tolerance for > 3 yrs
- plasma catecholamines:10-50 fold increase in major burns and can stay for > 3 yrs
- Plasma corticosteroids: similar
- cytokines: rise immediately after burns and comes down only after one month
- acute phase proteins : altered 5-7 days post burn

metabolic response to burns & trauma endocrine response breaks down:

fatty deposits \rightarrow fatty acids

liver/muscle (glycogen) \rightarrow glucose

muscle (amino acids) \rightarrow amino acids

metabolic response to trauma & burns

- hypermetabolism
- insulin resistance
- lipolysis
- accelerated protein catabolism

metabolic response to trauma

measured REE(mREE) is greater than *estimated* REE(eREE)

in major trauma it may go up and last for3-4 weeks following trauma

nitrogen loss in critically ill

- normal..... 6-9 gms
- elective surgery.. 10 gms
- infection..... 15 gms
- sepsis...... 18 gms
- trauma..... 21 gms
- burns...... 28 gms

nitrogen loss in critically ill

- 1 gm N2 = 6.25 gm protein
 - = 31.25gm muscle mass
- 15 gms of N2 = 93.9gms of protein
 = 458.75gms of muscle mass
- 21 gms of N2 = 131.5 gms of protein = 656.25 gms of muscle mass
- 28 gms of N2 = 175 gms of protein

= 875 gms of muscle mass

Long formula:

BEE × activity factor × injury factor male BEE = 66.6 + 13.8 W + 5 H - 6.8 Afemale BEE = 655 + 9.6 W + 1.9 H - 4.7 AW= weight(kg), H= height(cm), A= age(yrs)

activity factor: 1.2 (if confined to bed), 1.3 (if out of bed) injury factor: 2.1 for severe thermal burn

Curreri formula:

age (16-59 yrs): Kcal/day = 25W + 40 BSAB

age (> 60 yrs): Kcal/day = 20 W + 65 BSAB
(W = weight in kg, BSAB = % body surface area burnt)

a 50 yr old 60 kg person with 30% burn will need : $(25 \times 60) + (40 \times 30) = 1500 + 1200 = 2700$ Kcal daily

Direct colorimetry uses *measured* O2 consumption
 Co2 production to determine the REE (MREE)

MREE = $(3.9 \times Vo2)$ + $(1.1 \times VCo2) \times 60 \times 1/BSA$

formula for paediatric patients:

- WHO
 RDA (recommeded dietary allowance)
 Curreri junior
 Galveston infant
 Galveston revised
 Galveston adolescent
 - Galveston adolescent

resting metabolic rate in burns at 30°C

- exceeds 140 % of normal at admission
- reduces to 130 % once wounds are fully healed
- Further reduces to 120 % at 6 months and
- 110 % at 1 yr

administration of calories and protein:

- CHO should not be administrated @ > 5-7 mg/ kg / min
- fat should not be more than 30 % of the caloric requirement and would be around 2.5 gm / kg / day
- protein up to 1.5 2 gms /day ; in renal failure : 0.5 gm/day
- nutrition should be started within first 48 hrs of injury or admission and average intake delivered within 1st wk should be 60 – 70 % of total energy requirement

early enteral nutrition in burns & trauma

Early enteral nutrition provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients; a metaanalysis of randomised controlled trials.

Gordon S. Doig, Philippa T. Heighes, Fiona Simpson, Elizabeth A. Sweetman, Andrew R. Davies. Intensive Care Medicine, December 2009, vol 35, issue 12, p 2012- 2027

antioxidant micronutrients in major trauma and burns

major trauma & burns have an

- increased free radical production which is proportional to severity of injury
- negetive trace element balances : selenium, zinc, vit C & E status are altered in all injured patients
- Patients in major burns have copper deficiency
- In major burns, high dose vit C for 24 h achieve reduction in resuscitation fluid requirement by endothelial anti oxidant mechanisms both in animal models and in one human study

Berger M M, Dept of CCU & Burn Centre, Lausanne, Switzerland

immunity in major trauma and burns

- trauma docs the 'increased succeptibility' of patients to infection (mechanism not known)
- Burns decreases immunity and major cause of morbidity and mortality in burns is sepsis

Immuno nutrition in major trauma and burns

 specific nutrients such as arginine,omega-3 PUFA, glutamine and nucleotides have been shown to modulate host response in animals but there is inconsistent clinical evidence

• Theory:

arginine stimulates T lymphocytes and provides a substrate for generation of NO omega-3 PUFA promotes synthesis of favourable prostaglandins. They are anti inflammatory agents long chain omega-3 FA decreases production of eicosanoids, cytokines and adhesion molecules nucleotides nonspecifically enhances immune competence

assessment of energy requirement in burns & trauma

subjective global assessment (SGA):

- weight loss
- food intake
- presence of significant g.i. symptoms
- functional status / energy level
- metabolic demand of the underlying disease states

on examination:

- depletion of subcut fat
- quadriceps and deltoid muscle wasting
- oedema
- ascites

each one is assigned category A (well nourished), category B (mildlymalnourished), and category C (severely malnourished)

loss of lean body mass in burns

- 10 % loss of lean body mass decreases immune function
- 20% loos decreases wound healing
- 30 % loss leads to increased risk of pneumonia
- 40% loss leads to death

protein loss can remain upto one year a severely burnt patient can develop cachexia in one month

enteral nutrition in trauma & burns

Principles:

- Use the oral route if GIT is functional
- Initiate nutrition thru enteral route if pt is not expected to be on a full oral diet within 7 days
- If enteral route is contraindicated/ not tolerated, use PN within 48 h
- Administer at least 20% of calories and protein requirement enterally while reaching the goal with PN
- Maintain PN until pt tolerates 75% of calories thru enteral route and EN until he/she tolerates 75% calories through oral route

contraindication to EN

- Intractable vomiting , diarrhoea refractory to medical manag.
- distal high output intestinal fistula
- GI obstruction , ischaemia
- diffuse peritonitis
- severe shock, haemodynamic instability
- severe GI haemorrhage
- severe short bowel syndrome
- severe GI malabsorption
- inability to access GI tract
- paralytic ileus

Complications of EN

- diarrhoea
- nausea & vomiting
- constipation & faecal impaction
- aspiration pneumonia
- hyponatremia , overhydration
- hyper natremia, dehydration
- hypokalemia, hypomagnesemia, hypophosphatemia
- hyperkalemia
- Re-feeding syndrme

Complications of EN

- diarrhoea
- nausea & vomiting
- constipation & faecal impaction
- aspiration pneumonia
- hyponatremia , overhydration
- hyper natremia, dehydration
- hypokalemia, hypomagnesemia, hypophosphatemia
- hyperkalemia
- Re-feeding syndrme

Refeeding syndrome

- Refeeding in nutritionally depleted patients (≥ 10% loss of body weight over ≤ 6 months) should be done carefully so as not to overload a metabolic system that has adopted to minimal or no food intake
 - intake should be increased step wise over a week / 10 days hypo phosphatemia occurs when tissues begin to rebuild and is problematic if inadequate phosphate is given in the food. It causes major muscle weakness and glucose intolerance

monitoring for nutrition

• daily / alt days / biweekly:

BUN, serum creatinine plasma electrolytes glucose, Ca, Mg, inorganic phos, Hb, WBC, platelets, triglycerides and transaminases

- serum albumin: $t \frac{1}{2}$ 14 20 days
- transferrin: $t \frac{1}{2}$ 9 days
- pre albumin: $t \frac{1}{2} \quad 1-2 \text{ days}$
- retinol binding protein
- nitrogen balance

monitoring for nutrition

- daily / alt days / biweekly:
 - BUN, serum creatinine plasma electrolytes
 - glucose, Ca, Mg, inorganic phos,
 - Hb, WBC, platelets,
 - triglycerides and transaminases
- serum albumin: t ¹/₂ 14 20 days
- transferrin: $t \frac{1}{2}$ 9 days
- pre albumin: $t \frac{1}{2} \quad 1-2 \text{ days}$
- retinol binding protein
- nitrogen balance

nitrogen balance

(protein intake/ 6.25) – (UUN † 4.0) gms over 12/24 h

0 to - 5 moderate stress

< - 5 severe stress

parenteral nutrition in trauma & burns

• advantages:

direct mixing in blood no risk of aspiration

disadvantages:

intestinal mucosal atrophy catheter related sepsis expensive

Summary of nutrition in trauma & burns

- trauma and burns are hyper metabolic states and protein loss is maximum in comparision to any other stress and this state persists for a long time
- early enteral nutrition is key to successful out come in these conditions
- monitoring of nutritional status and complications of nutrition delivery are extremely important
- parenteral nutrition should be started if enteral nutrition is not possible within 48 h

references

- Mosier, Michael J; Pham, Tam N; Klein, Mathew B etal. Early enteral nutrition in Burns. Compliance with guidelines and associated outcomes in a multicentre study. J of Burn & Research, Jan/Feb 2011- vol32- issue 1 pp 104 – 109
- 2. A Chiarelli, G Enzi, A Casadei, B Baggio, A Valerio, and F Mazzoleni Very early nutrition supplementation in Burned Patients
- 3. Nquyen Nhu Lam, Nquven Gia Tien, Chu Manh Khoa. Early enteral feeding for burned patients an effective method which should be encouraged in developing countries. Burns 2008, vol 34(2), P192-196
- 4. Guo G H, Xu C, Bai X J, etal; China. Effect of arginine enriched EN on Nutritional status and cellular immunity in burn patients
- Rugueiya M Al Balushi, Jenifer D Paratz, Jeremy Cohen, et al. BMJ open 2011.1 Effect of intravenous glutamine supplementation in trauma patients receiving Enteral Nutrition Study Protocol(GLINT Study)

Thank you